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ABSTRACT A
Fast parallel matrix multiplication algorithms in SIMD

(Single—Instruction—Multiple data) and MIND (Multiple—Instruction—
Multiple—data) modes are described for implementation in a
parallel—binary matrix processing system with facilities for
bit-wise parallel Boolean operations and power-of-two shifts
on Boolean matrices. A comparative study of these algor ithms
is made on the basis of their relative time—comp lexities , when
conventional binary and prime-modulus arithmetic are used for
forming the matrix product.
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1. Introduction

The object of this paper is to describe fast parallel algo—

rithms for multiplying matrices of arbitrary sizes having inte-

ger elements of arbitrary magnitude. These algorithms are

based on the earlier work of K].ette (33 but attempts are made

to improve them by the use of modular arithmetic for computa-

tion. The use of modular arithmetic in effect improves the algo-

rithms in (3] when the matrix product has elements which are

very high precision numbers of the order of 2e (or e bits). It

is shown that if two matrices of size (mxm) are multiplied, and

we choose r prime numbers k~ each of precision e~ 
bits, the

time taken is as follows:

Single-instruction-multiple—data algorithm
2 r 2O(re + in (e log in + £

i—I.
Multiple—instruction-multiple—data algorithm

O(].og r log e + (log em)(max log ei)). ~

L Since matrix multiplication is an important operation for

realizing matrix transformations and inversions of matrices

(7,12] it is believed that the present approach will have prac-

tical utility.

The organization of this paper is as follows: Section 2

describes the basic principle of the parallel matrix multiplication

1Logarit1~ as are always taken to the base 2. 
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algorithms; Section 3 explains the design features of a

parallel processor for bit-wise computation; the time corn-

p].exity of the various possible schemes are discussed in

Section 4; the use of fast multiplication schemes for further

speedup is considered in Section 5; finally, the speedup that

can result by the use of modular arithmetic is described in

Section 6.
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2. Principle and definitions

We denote the two matrices A = (a~~) and S — (b k) ) of size

(kxm) and (mxn ) respectively. Our aim is to compute A 8  of

size kxn with elements
m
Z a

~ 
b 

~ 
for i = l 2 , . . . ,k , j  =

pal P P.J

By ‘parallel’ we mean that the operations transform the operand

matrix as if all the matrix elements were processed simultaneously.

For the practical realization of such a scheme we can think of

fiber optics (10] or CCD techniques (8].

We now describe the principal idea of our algorithm:

Let C(p ]  denote a (kxn) matrix in which all the columns are

identical with the p—th column of the matrix A; let 1~(p3 denote

a (kxn) matrix in which all the rows are identical with the p-th

row of the matrix 8. For two matrices C and R of the same size

kxn , let

C* R = ‘c r‘ ij ij’i = l, 2 , .. ., k , j  =

be the modified product of these two matrices C and R . It im-

mediately follows that
m

Lemma: A 8  a Z C ( p ] * R ( p ] .
p—1

We illustrate this lemma by an example in Figure 1.

This lemma can be used for parallel computation of A S ,

either in SIMD (single-instruction—multiple—data) mode or MIMD 

: -
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a11 a12 a~j
a21 a22 a23 

b11 b12
A —  a31 a32 533 

8 =  b21 b22

~4l a42 a43 
b31 b 32

A •8  — C ( l ] *R ( l ]  + C ( 2 ] * R ( 2 3  + C ( 3 ] * R ( 3 ]

~11~b11 a11.b1~ ~12-b 21 a12 b2~ ~13 b31 a13•b 3

= 

a21~ b11 a21 b12 + 
a22 b21 a22~b22 + 

a23 b31 a23 b32
a31 b11 a31~ b12 a32~ b21 a 32 b 22 a33 b31 a33 b32
a41 b11 a41 b12 a42 •b 21 a42 b 22 a43 •b 31 a43 ~b12

Figure 1. Illustration of Lemma 1 
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(multiple—instruction-multiple—data) mode, using Flynn’s (1]

notation. In writing these algorithms we use an Algol—like

notation for brevity.

(1) SIMD mode.

Algorithm PS

begin matrices A ,8,C,R,A~8;

integer m,p;

initialize A S  identical 0;

for p - 1 step 1 until m do

C a C[p] using A , and R = R (p ]  using 8;

C a C * R ;

A &  = A S+C

od;

end

Remark: This algorithm involves in steps of computation, each

with one construction of C(p] and R (pJ, one modified matrix pro-

duct, and one matrix addition. If we regard these as primitive

operations, we obtain A .8 in SIMD mode in 0(m) operations. This j
algorithm was described in Klette (33.

(2) MIMD mode.

For realization in this mode , it is assumed that in is an in-

tegral. power of 2; where it is not we assume log in is replaced by

its higher integral part in the algorithm described below.

_ _ _ _
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A1gO~ithm PM

begin matrices A , 8,C( 1 ] , . . . , C (m] , R ( l ] , .. . , R ( m ] ;

integer m,p,i;

for p = ]. 
~~~~ 

1 until in do in parallel

compute C[p],R(p] using A , B, respectively;

C ( p ]  = C ( p] * R(p ] ;

for i = 1 step 1 until log m do

for p = 1 step 21 until rn—i do in parallel

C (p 1 = C (p] + C (p+ 2~~~
1] ;  -

od;

od;

end

Remark: In this algorithm we first perform in one step the

construction of C (pl and R (p] and one modified matrix product

for p 1,2,...,m in parallel. Then we compute in log m steps

of parallel matrix addition the desired sum E C(p] = A S  in
pa].

the matrix field C(l). Assuming that these are primitive in—

structions for a certain MIMD computer, A S  can be computed ir’

O(log in)  steps.

In the next section we will explain how to de~ ise a parallel

processor for bit-wise computation in order to realize the

operations used in the algorithms PS and PM.

rM -



3. Parallel processor for bit—wise computation

We assume that the elements of the matrices A and S are

integers from the set 0 , i, 2 , .. ., ?—l for e�l. (Note that

this does not restrict the choice of negative numbers as ele-

ments of A and 5, as complement notation can be used.) Then

each matrix A (or 8) can be encoded in a bijective manner

through a sequence of e Boolean matrices Ae..lsAe_21• . .,A~ of

the same dimensions as A , where

Ae_i (i t~
) Ae 2 (~

s
~
) ... A~ (i,~ )

is the positional binary representation of the elements, viz.,

A(i,j) — ~~~~~ In other words, the matrices Ae_it Ae_ 2s •••t A0

represent the bit planes of the matrix A. For illustration , an

example is provided below:

Let A = [ ~ 
191 then

~ ro~i ro ol Ei ol ro il n i lA4A3A2A1AO - La a] Li. 0] Ll i.J Lo iJ La 1]
It is clear that using such a positional-additive decompo-

sition, the matrix operations (such as add, multiply) can be

realized using Boolean operations and shifts on sequences of

such Boolean matrices.

(1) Addition in SIMD mode .

Let Ae_l~Ae_ 2 l~~~• r AO and Be_i~ Be _ 2 i • • • r BO be binary

matrix sequences of same dimensions. Then the following algo-

rithm (3] performs the matrix addition A+8 using Boolean

f L



operations on the binary matrices (bit-wise parallel) as basic

steps in SIMD mode.

Algorithm AS

begin binary matrices A0 ,... 
~Ae_ lI BoI . .. l Be...il Co~

D , CARRY ;

integer e,i;

C0 = A~ GB~ ; CARRY = A0A30; j=];

while i(e do

D = A. GB.; C. = DGCARRY ;
1 1 1

CARRY (A
i
AB

i
)V(CARRYAD);

i i+l;

od;

Ce CARRY ;

Remark: The sequence of the outputs CeS Ce_i~ •••1 CO represents

the result A+ 8. Using bitwise parallel Boolean operations on

binary matrices this algorithm in SIND mode has time complexity 
- 

H

0(e).

Note that the basic idea of this matrix addition algorithm

is similar to adding two c—bit numbers in sequential mode.

Figure 2 illustrates this algorithm.

(2) Addition in MIMD mode. —

In (9] a SIMD algorithm has been described for adding c—bit

numbers in parallel in O(log e) steps , using parallel-bitwise

Boolean operations and shlfts in vector regi sters Using this

~~
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L 2 3 J L 11J L 0 1 J  10

8 - [ 2 3 1- r19 [o l l B B
La 1] Lo oJ 1]

n i l  ro o l
C
0 

= A0130 = L ~J 
~ CARRY = A0 A B~ = [ ~J

D = A1GB1 = 
[1 0~ , = DGCARRY = [ 01
Li ii L10J

10 11
C2 = (A 1AB1

) V ( CARRY AD ) = I I
L o u

E 3 5 1  ro il ri ol nl ll
A + S = [ j = L j  [~] [O0]~~~~~

2dlCo

Figure 2. Illustration of Algorithm AS
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SIMD algorithm we now give an algorithm in MIND mode for adding

binary matrices Ae_ iI •••r AO and Be....l~ •••i B0 in O(log e) time.

This algorithm is most efficient when e is a power of 2; where

it is not we assume log e is replaced by its higher integral

part in the algorithm described below.

ALGORITHM AM

begin binary matrices A~0,...,A~~11B01...,B 11C0,...,C 1,C ,D0I...,D 1;

integer e,i,j;

for i = 0 step 1 until e—l do in parallel

C~ = A~AB. ; D. = A .VB~ ;

od;

for i = 0 step 1 until log c-i do

for j  = 21 step 1 until c—i do in parallel

C
~ 

= C~V(C~~ 2i 
A D~ ) ; F’

D~ = D~AD~_2i;

od;

od;

Ce = Cc i ;

for i = 1 step 1 until c—i do in parallel

Cj Cj_i G A i G B
~ ;

od;

C0 A0GB0;

end

Remark: “ ‘
~ secj~uence of the outputs Cei Ce_ ii •••~

C0 represents

the result~ A+8. This algorithm in MIMD mode has O(iog e) time

V

_ _ _ _ _ _ _  _ _ _ _ _ _  _ _ __ _  
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complexity. In Figure 3 we illustrate this algorithm.

(3) Generation of C(p ]  and R E p ]  in SIND mode . (
The processes of generating C(p], p = l,2 ...,m and

R(p], p = l,2,...,m are important operations in our algorithm.
-

~ Let A = A~ _ 1~A~ 2~~..,A0 be the matrix of size nuan where in is a

power of 2. The following SIMD algorithm computes Ce_i~
Ce_ 2•••CO

corresponding to C(1] (see (3]). The algorithm uses power-of-

two shifts of Boolean matrices; such shifts are denoted by 4~2
1

(left~ ~2~ (right) , +21(up), +2 1 (down) where the shift distance
is 2~~. While performing such two—dimensional shifts, the vacated

columns or rows are filled with zeros , and the shifted-out

columns or rows are discarded .

Algorithm CS

begin binary matrices A0,... IAe_lt C0t~~• 
.

integer e,i,j;

in M the leftmost column is identically 1, otherwise M is 0;

i 0 ;  -

while i<e do

= A~ AM; j0;

while j<log in do

C~ C~V(C~+2~ ); j  j+1;

od;

iai+l;

2~.
end

L _ _ _ _  _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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A - D~ i.~J - ~ E~. ci ~ ~:i ~~ 
- A3A2A1AO

- D 13J - !~ ~i ~ ~ 

= B~B~B~B~

-~ step i: -

ro 11 ro 01 ro 01 ro l l = c c  C C
L 0 Q J L10J L 0 1 JL 0 0 J  3 2 1 0

V a  r 111r 111r 1 o 1r~11= D 3D 2DlD
L o l JL lo JL llJL l u J

step 2 (i~’O):

~~~~= ~~~~~~~~~~~~~~~~~~
step 3 (i 1) : —

C =  ~o l 1 r O 0 p 1 1~~~~~~~~~i o ~~~ i o 1 r l o 1r l n
LO oJ L l o JL O l JL o o J  L o o JL l o JL i l JL l l J

step 4:

step 5:

C1 = [111 , 
~2

= n h  , C3 [~1 oj
L 1 OJ  19 1J  L~ i

step 6:

~~

° Lll J
result:

A+B = [15 22 1 = [0 ‘1 ni 01 [1 i
~ 

[1 fl [1 01 = C C3C2C1C0Lll l3J Lo oJ Ll lJ Lo lJ L l o JLllJ

Figure 3. Illustration of algorithm AM
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Remark: Using bitwise parallel Boolean operations and power-of-

two shifts on binary matrices this algorithm has time complexity

0Cc log m). The principle of this algorithm is easy to under— —

stand, demonstrating the utility of power-of-two shifts using

a divide-and—conquer approach. The construction of matrices

C(2],...,C (mj ,R[i],...,R (m] can be performed within the same

time, using an analogous algorithm.

(4) Generation of C(p] and R(p] in MIND mode.

The construction of C(l] can be done within time O(log in)

using the following algorithm in MIND mode.

Algorithm CM

Change i-loop in algorithm CS into a parallel instruction.

Remark: The generation of the matrices C(l],...,C (m],R(l],...,

R im] can be done within time O(log in)  in MIND mode.

(5) Modified matrix product in SIMD mode.

In what follows we shall assume that bit—wise parallel

Boolean operations and power-of-two shifts on Boolean matrices

are basic operations in our computational model. We will call - I
this model a Parallel Binary Matrix Processing System (PBS).

(For a more detailed description of this model see (3,4,5].)

• In this model the size of the matrix registers is restricted to

the original size of the input matrices. In Pratt et al. (9],

however, a similar model for computation is described (with

restrictions on one—dimensional registers) with unrestricted

registers. It is our view that PBS offers a more realistic model 

-.~~- —-~~~~~~~~-~ -~~~~ -——-—-~~~~~~~~~~ -..~~~~--- — ~~-•—-~
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for computation, since programs in the PBS model take linear

space while programs in Pratt/Stockmeyer’s model (9] use expo-

nential space for problems such as matrix multiplication.

The essential advantage of PBS for computing the modified

product is that well-known techniques used for computations with

binary numbers can be translated directly to the case of binary-

matrix computations. In fact, using the usual 0(e2) algorithm

for multiplying c—bit numbers, one can realize the modified

matrix product of two matrices A~~1IA 2,...,A0 
and Be_i1Be 2~~ ••~ - -

in time complexity 0(e2) in SIMD mode.

Algorithm MS

begin binary matrices 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

•
~~~

E
e_ l

lD
O~~~

•
~~ 
. p D~_j,D~~

integer e,i,j;

C0 = A0AB0;

for i = 0 step 1 until e— 2 do r~~—A~÷1AB0 ; od;

De l  identical 0;

for j—O step 1 until c—h do

for iaO step 1 until c—h do E~ aA~ AB~~; od;

addition of De_lDe_ 2•••Do and Ee lEe 2...E0 using

algorithm AS, resulting in DeDe_ i...D0;

C
1 
aD

0

for i—0 step 1 until c—i do D~ aD~ +1; ~~~~~~~;

for i—0 step 1 until c—i do Ce+i~~
Di ; ~~~ ;

F - -a

______  - 

.. .
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Remark: The sequence C2e....l~
C2e..2•e•CO 

represents the modified

product A*5. This program runs within time 0(e2).

(6) Modified matrix product in MIND mode.

In Pratt et al. (9], a SIMD algorithm can be found for

the parallel realization of the multiplication of two c-bit

numbers in 0(log e) steps using parallel bitwise Boolean opera-

tions and shifts on vector registers. Using this same basic

idea we can give an algorithm in MIND mode for computing the modi-

fied multiplication of matrices Ae_lAe...2••*A O and Be l Be_2•••BO
running in time O(log e). This translation can be done in a

manner similar to the method used in algorithm AM: One parallel

operation on vector registers can be translated into one parallel

instruction on sequences of Boolean matrices. Unfortunately,

the resulting MIND algorithm for PBS requires a very large number

of matrix registers (0(m2)).

Algorithm MM

Translation of the SIMD algorithm for multiplication of

binary numbers in Pratt et al. (9] into MIND program for PBS.

With t~iis algorithm all operations used in the algorithms PS and

PM are implemented on PBS, either in SIMD mode or in MIND mode.

I
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4. Time complexity

In Section 2, we described two basic algorithms for coin-

puting the matrix product, one in SIMD mode and one in MIND

mode. In Section 3 we described two ways to implement these

algorithms on PBS in SIND and MIND modes. Thus altogether we

have at least four different ways to compute the matrix products

in parallel; we will now summarize the time complexity for these

four cases assuming that A and 8 are mxm matrices (with in a

power of two) and that the elements in A and B are from the set

Case i: The general SIMD algorithm with SIMD implementation on

PBS has time complexity 0 (in e (log m + e)).

Case ii: The general SIMD algorithm with MIND implementation on

PBS has time complexity 0 (m(log m+log e)).

Case iii: The general MIMD algorithm with SIMD implementation

on PBS has time complexity 0 (e (log m+e)).

Case iv: The general MIND algorithm with MIND implementation on

PBS has time complexity O(hog m log c)

In our opinion, Case i is presently a realistic mode for

technical implementation (see (101). In what follows we refer

to Case i as the single—instruction—multiple—data algorithm. In

Section 6 we will use these two approaches and discuss ways to

improve the speed by using residue or modular arithmetic and

other procedures; see Knuth (6] and Krishnamurthy et al. (7].
N1,

p1,1

___________ - -
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Since in practical numerical analysis of matrix operations, -

the precision of the result is of considerable importance, - 

-

it is necessary to examine whether the time complexity 0(e2) 
-

required f or SIMD implementation (Cases i and iii) and 0(log e)

for MIMD implementation (Cases ii and iv) can be reduced, assum- I

ing m to be a constant.
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5. Use of fast multiplication schemes

It is well known (Knuth (6]) that the order—c2 method is

not the quickest way to multiply c—bit numbers. For example

Karatsuba ’S (2] method involves only ~ l0~ 3~~~l•59 steps using

the conventional sequential implementation. This method leads

to a SIMD algorithm for the modified matrix product on PBS

running within the same time 0Cc2”59). We will call this

algorithm MSK.

Algorithm MSK

Translation of Karatsuba’s method into a SIMD algorithm

for PBS for the modified product A*8.

Remarks: For a detailed description of this and other methods

for multiplying c—bit numbers, see Knuth (61. In our view algo—

ritlin MSK is suitable for practical realization and so we will use

this for our purposes. For Cases (i) and (iii) described in

Section 4, this algorithm leads to the following improvements:

Case i: Time Complexity O(m e log m + in e2”59).

Case iii: Time Complexity O(e log in + e~
”5

~).

In the next section we will discuss the application of

residue arithmetic and consider the time complexities for the

SIMD and MIND algorithms.

I—
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6. Modular arithmetic procedures

Another significant and practical approach to speeding up

the processing time is to use modular or residue or congruence

arithmetic. For discussions of modular arithmetic reference is

made to Knuth [6]; for applications to matrix inversion see

Krishnaxnurthy et al. (7].

For this purpose let us assume that A=(a~1
), 8=(b~~) are

two mxm matrices with elements in {0,i,2,...,k-l} and that the

product A S  has elements in the same set. (Note that this dif-

fers from our earlier discussions where we develop products in
- - conventional arithmetic.) Let kis k2i; •~

kr be a set of pairwise

relatively prime integers, with k = E k1. It is well known
-i i=l

(Chinese remainder theorem) that there is exactly one integer

a which satisfies the conditions

0 ~ a £ k—i and a a
1 
(mod k.)

for 1 s £ r, for any given sequence (ai,a2,...,ar) of integers.

Using this result the given matrices A and S can be encoded and

A -S can be computed in modular representation for each ~~~ and

then combined using the Chinese remainder theorem. Figure 4 gives

an example of multiplying two matrices A and 8 in this manner.

As illustrated, this procedure involves conversion of A and

S to modular representation modulo each ~~ and computation of

A (mod k
1

) -B ü n o d k
1

) mod k 1, for 1 £ ‘ r. These results (namely

each element in the product) should then be combined using the

Chinese remainder theorem or other related procedures; see

6J
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A-
3 m  

Si,
E~~5J

Let k = 30 2 3 5 ;  k1 — 2, k2 = 3, k3 = 5

Step 1: Matrices A and B are encoded modulo k1,k 2,k3.

A (mod 2) = 10 ~1 A (mod 3)= n~ 
0J A (mod 5~ = P ~1L 10.J Li ii L14J

8(mod 2) = 10 ii B (mod 3~= 
ni 21 S mod ~ = [

~ 01
1 9°]  L2 li L2 4J

Step 2: Product of A (mod k
~
) and S(mod k.) modulo k1.

10 0 1  p 11  r4 21
L o i J  L o o] b i J

Step 3: Product of the result in Step 2 with k/k1 for 1 £ j £ 3.

1° 01 E2o lol p4 121
Lo 15J Lo oJ L12 6J

Step 4: Addition of the results in Step 3 modulo k.

114 221 =A .8
L12 21J -

Figure 4. Modular approach to matrix product.
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Szabo et al. [11], Knuth (6], Krishnamurthy et a].. (7], Young

H et al. ( 12]. Here we will use a straightforward multiplicative—
a 

additive approach, in which each element of the product

A (mod k
1
)-S~mod k1

) mod k
1 
is multiplied by (k/k

1
)~~~ j~ (where $

denotes Euler’s totient function) for 1 £ £ r and summed

modulo k, as illustrated in Figure 4.

An important aspect in using modular arithmetic is the

choice of k
1
s suitable for practical implementation. It seems

convenient from a practical design viewpoint that each k
3 
be a

prime of the form (2e1_1), since this would then correspond to

bitwise computation on PBS. (As an example e
1 

= 2,3,5,7).

Since we are interested in implementing the modular approach

on PBS, let us describe the general algorithms for implementation

in SIMD and MIND modes. r
Let A1*A (mod k.), B~

=S(mod k~) for 1 £ i ‘ r.

(1) SIMD mode.

- Algorithm PMS

begin matrices A ,8,A ,8 ,C,R ,V , A 8 ;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
initialize A -B identical 0;

f o r i = l s t e p l u n t i l rd o

production of A*aA~ and ~~~~~~~ 
using A and S

respectively;

for j = l s t e p l u n t ilm d . o

initialize V identical 0;

I-
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C = C ( j ]  using A~ and R = R(j) using S~,

C = C * R mod k~ ;

V = V + C mod k~ ; •

V =

A - B  = A •B+V mod k;

I

-

end

Remark: This algorithm has time complexity OCrm ), regarding

the operations used as primitive operations.

(2) MIND mode.

For this purpose we assume that r is a power of 2; where

it is not we assume log r is replaced by its higher integral

part in the algorithm described below. V

Algorithm PMM

begin matrices

Ri(h]s..., Rr(m];

integer m ,r,k,ki,...,kr,i,j,h;

for i = 1 step 1 until r do in parallel

— - production of A1 and 8~ 
using A and B respectiveiy;

for jal step 1 until m do in paraliel

compute C.[j].R~ (j] using A~ 1 8~ respectively ;

C~ (j]_C~ (j]*R~ (j] mod k~;

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~ - — - 
- -
~~~~~ -
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for j = 1 step 1. until log in do

for h=l step 2~ until rn—i do in parallel
C . ( h ] .

~
ITC . (h ]+C

~
(h+ 2

~~~
) mod k

~
;

od;

od;

Cj(l]=k/k ~
’C
~~
(l];

for i=i step 1 until log r do

for j =i step 21 until r-l do in parallel

C . ( 1] C . [ 1] + C  . 1 (1] mod k;
J j+ 2’

od;

Remark: This algorithm has time complexity 0(log in + log r),

regarding the operations used as primitive operations. The out-

put A -B is computed in matrix register C111].

Implementation in PBS

We first consider the addition and the modified product

modulo kh, 1 £ h £ r. According to the well-known techniques

for modular arithmetic (Knuth [6]), for matrices F and G with

elements f~11g~1 
respectively , each with eh~

bit length (with

bit positionE eh-l,eh 2,...
~~
o
~ 

the sum F+G modulo kh 2 h_1 is

easily obtained thus:

I

___________ T
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C
ff. .+g. . if f. .+g. <2

f .  .+g . . (mod k
h
) ~~~~~ 1] 

~~ 
eh 

13 1)
3.3 13 L ((f..+g.~~)mod 2 +1, otherwise.

This operation is easy to perform on PBS: after the usual

addition operation, the most significant bit plane, correspond—

ing to bit position ehl is added to the bit planes eh
_h , eh-2,...,O .

In other words , the addition inodulo kh needs twice the time of

addition of two eh~
bit matrices, i.e. O(eh) in SIMD mode if we

use algorithm AS, and O(log eh) in MIND mode if we use algorithm

AM.

For obtaining the elements of the modified product F *G

(mod kh), the rule is:
eh ehf~ 1

g~ 1 
(mod kh) = ( f . . ~~g . .  mod 2 ) + ~.f g / 2  1(mod kh).

To do this calculation, we perform the modified product of two

eh—bit matrices F and G; then we perform an addition modulo kh

of the f i r s t  eh+l bit planes and the last eh bit planes . Using

the algorithms MS and AS we can perform this on PBS in time

0(e~) in SIMD mode. Using algorithms MM and AM, the modified

product can be computed in 0(log eh) steps in MIMD mode.

Now consider the construction of the matrices (A mod k~)

and B~ (8 mod k~
). For this purpose, we can group together

blocks of e1 bit planes of a given matrix A. Let these blocks

of bit planes be denoted by the matrices A i,A 2,...,A t. Then

we perform the addition
e

41 ~42 
+ ... + A~ mod k~ (k1=2 

i_1)

~~~~~~~~~~ 
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I
(see Knuth [6]). For this, in SIMD mode we need 0 (e1 (t— l))

- 
- 

= 0(e~ • 
log k) = 0(e) steps on PBS if we assume k 2e and

in MIND mode we need 0(log e1 log t) = 0(log e
~ 

log ~ -) =

O(log e~ log e - C log e~) ) steps on PBS.

Finally we consider the opera-tion of matrix addition modulo

k. In the algorithms PMS and PMM we have the operations

A S  = 4 B+V mod k, and

C. (1] = C. (l] + C i 1 11
~ 

mod k.3 j+2

To explain this, at each step of the operation, we first perform

the (usual) addition and then we subtract from each element in

parallel the value k; if the result is negative we retain the

element value, otherwise we retain the subtracted result as the

new value of the element. This is because of the fact that each

element mod k1 when multiplied by k/k~ can be in the range

0,1,.. .,k-l and so when the elements are added modulo k the

result can lie in the range 0,1,...,2k—2. For implementation

on PBS, note that in the resulting matrix after the subtraction,

an overflow appears in the most significant bit plane in all

places where the value after the addition was greater than k,

and vice versa. We use this most significant bit plane as a mask

for the decision between the original value and the subtracted

value, for all log k bit planes. Altogether, the matrix addition

modulo k used in the algorithms PMS and PMM can be performed on

PBS within time 0(log k) = 0(e) in SIMD mode, and within time

O(iog e) in MIND mode.
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We will now summarize the time complexity for the SIMD

and MIND algorithms using modular arithmetic. For the algo-

rithm PMS in SIMD implementation we have the time
2 r 2O(re + m(e logm+ Ze.))

i=l ‘

For the algorithm PMN in MIND implementation we have the time

0(log r log e + (log em) (max log ei) )
1.

A comparison of the time needed for the SIND algorithms here

and in Section 4 shows that modular arithmetic is to be pre—

f erred when e is large (high precision) and in is greater than

r. The comparison of the needed time for the MIND algorithms

here and in Section 5 also indicates that modular arithmetic

is to be preferred when m is greater than max re1.
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7. Concluding remarks

We have presented several fast parallel matrix multipli-

cation algorithms in this paper. Some of these algorithms can

be speeded up further when the computations involve certain

kinds of structured matrices. Such structured matrices, as we

know , arise in practical problems involving various kinds of I F

transformations needed in matrix computations, e.g. elementary, I’

orthogonal transformations. This will be a fruitful area for

further study.
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